Role of microstructure in the aging-related deterioration of the toughness of human cortical bone
نویسنده
چکیده
The aging-related deterioration of the fracture properties of bone, coupled with higher life expectancy, is responsible for increasing incidence of bone fracture in the elderly; consequently, an understanding of how these fracture properties degrade with age is essential. In this study, ex vivo fracture experiments have been performed to quantitatively assess the effect of age on human cortical bone in the proximal– distal orientation, i.e., longitudinally along the osteons. Because cortical bone exhibits rising crack-growth resistance with crack extension, the toughness is evaluated in terms of resistance-curve (R-curve) behavior, measured for bone taken from wide range of age groups (34–99 years). Using this approach, both the crack-initiation and crack-growth toughness are determined and are found to deteriorate with age; the initiation toughness decreases some 40% over six decades from 40 to 100 years, while the growth toughness is effectively eliminated over the same age range. The reduction in crack-growth toughness is considered to be associated primarily with a degradation in the degree of extrinsic toughening, in particular, involving crack bridging in the wake of the crack. An examination of the micro-/nano-structural changes accompanying the process of aging, using optical microscopy, X-ray tomography, nanoindentation and Raman spectroscopy, is shown to support such observations. Published by Elsevier B.V.
منابع مشابه
Effect of aging on the transverse toughness of human cortical bone: evaluation by R-curves.
The age-related deterioration in the quality (e.g., strength and fracture resistance) and quantity (e.g., bone-mineral density) of human bone, together with increased life expectancy, is responsible for increasing incidence of bone fracture in the elderly. The present study describes ex vivo fracture experiments to quantitatively assess the effect of aging on the fracture toughness properties o...
متن کاملEffect of aging on the toughness of human cortical bone: evaluation by R-curves.
Age-related deterioration of the fracture properties of bone, coupled with increased life expectancy, is responsible for increasing incidence of bone fracture in the elderly, and hence, an understanding of how its fracture properties degrade with age is essential. The present study describes ex vivo fracture experiments to quantitatively assess the effect of aging on the fracture toughness prop...
متن کاملEffect of Aging on Fracture Toughness of Al6061-Graphite Particulate Composites
This article presents the investigative work conducted on the fracture toughness and microstructure of Al6061-9% graphite particulate composites. The requisite specimens for the fracture toughness testing were compact tension ones prepared using stir casting technique. The Al6061-9% graphite particulate metal matrix composite has been heat treated in the underaged condition. It is observed from...
متن کاملAge-Related Changes in Trabecular and Cortical Bone Microstructure
The elderly population has substantially increased worldwide. Aging is a complex process, and the effects of aging are myriad and insidious, leading to progressive deterioration of various organs, including the skeleton. Age-related bone loss and resultant osteoporosis in the elderly population increase the risk for fractures and morbidity. Osteoporosis is one of the most common conditions asso...
متن کاملThe Effect of Microstructure on Estimation of the Fracture Toughness (KIC) Rotor Steel Using Charpy Absorbed Energy (CVN)
The proportional relationships between the Charpy absorbed energy (CVN) and the KIC values have been established for a wide variety of steels. Several formulae have been proposed that predict KIC from CVN. The purpose of this study is to investigate, by means of compact testing fracture toughness specimens, the effective role of microstructure for estimation of the fractur...
متن کامل